Math 102

Krishanu Sankar

October 16, 2018

Announcements

- Review Sessions for Thursday 10/25 Midterm
- Monday 10/22 in Buchanan A201, 3-7pm
- Tuesday 10/23 in CHBE 101, 3-7pm
- Reminder: OSH deadlines are at 9 pm .
- If you have an issue with submission, send me a message with your OSH by before 12 midnight.

Goals Today

- Optimal Foraging - optimizing long-term average rate of gain subject to constraints.
- Least Squares - using optimization to fit a set of data points with a best-fit trend line

OSH 3 Recap

Tradeoff between Math and Chemistry depends on difficulty of math exam, k.
https://www.desmos.com/calculator/73d5om1uwo

Recall: from OSH 2

Bears search for berries in patches that grow in patches that can be spread out across a large area. A bear will spend time in one patch gathering food before moving to another patch. The number of berries collected in a patch depends on the amount of time spent in the patch:

$$
f(t)=\frac{A t}{k+t}
$$

https://www.desmos.com/calculator/cwkxvbdpj2

$f(t)=$ Total food collected

Question: For each graph, give a verbal description of how the food collection rate behaves over time.

How long should I spend per food patch?

- Stay too long in one patch - diminishing returns as the patch gets depleted.
- Leave a patch too early - spend unnecessary time traveling.

Optimal Foraging

Maximize average rate of food collected per unit time

$$
R(t)=\frac{\text { food collected per patch }}{\text { travel time }+ \text { time in patch }}=\frac{f(t)}{\tau+t}
$$

Optimal Foraging

Maximize average rate of food collected per unit time

$$
R(t)=\frac{\text { food collected per patch }}{\text { travel time }+ \text { time in patch }}=\frac{f(t)}{\tau+t}
$$

$$
=\frac{\frac{A t}{k+t}}{\tau+t}=\frac{A t}{(k+t)(\tau+t)}
$$

Optimal Foraging

Maximize average rate of food collected per unit time

$$
\begin{gathered}
R(t)=\frac{\text { food collected per patch }}{\text { travel time }+ \text { time in patch }}=\frac{f(t)}{\tau+t} \\
=\frac{\frac{A t}{k+t}}{\tau+t}=\frac{A t}{(k+t)(\tau+t)}
\end{gathered}
$$

- Bear can't control $\tau=$ travel time per patch. Treat this as a constant. Same with A and k.
- Bear can control $t=$ time spent per patch. Treat this as a variable.

$$
R(t)=\frac{A t}{(\tau+t)(k+t)}
$$

'If the bear chooses to spend t minutes in each patch, the overall average rate of food collection will be

$$
\frac{A t}{(\tau+t)(k+t)} \cdot
$$

Goal: Maximize $R(t)$, i.e. maximize efficiency.

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)
- For large $t: R \approx \frac{A t}{t \cdot t}=\frac{A}{t}$

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)
- For large $t: R \approx \frac{A t}{t \cdot t}=\frac{A}{t}$

Sketch $R(t)=\frac{A t}{(\tau+t)(k+t)}$

- For small $t: R \approx \frac{A}{\tau k} t$ (linear)
- For large $t: R \approx \frac{A t}{t \cdot t}=\frac{A}{t}$

To figure out which sketch is accurate, let's find the critical points.

Maximize $R(t)=\frac{A t}{(\tau+t)(k+t)}$

Find the critical points

$$
R^{\prime}(t)=A \frac{k \tau-t^{2}}{(k+t)^{2}(\tau+t)^{2}}=0
$$

Maximize $R(t)=\frac{A t}{(\tau+t)(k+t)}$

Find the critical points

$$
\begin{aligned}
& R^{\prime}(t)=A \frac{k \tau-t^{2}}{(k+t)^{2}(\tau+t)^{2}}=0 \\
& \Longrightarrow k \tau-t^{2}=0 \Rightarrow t= \pm \sqrt{k \tau}
\end{aligned}
$$

Maximize $R(t)=\frac{A t}{(\tau+t)(k+t)}$

Find the critical points

$$
\begin{aligned}
& R^{\prime}(t)=A \frac{k \tau-t^{2}}{(k+t)^{2}(\tau+t)^{2}}=0 \\
& \Longrightarrow k \tau-t^{2}=0 \Rightarrow t= \pm \sqrt{k \tau}
\end{aligned}
$$

Keep the positive root: $t=\sqrt{k \tau}$.

CP at $t=\sqrt{k \tau}$

Question: Give an airtight argument that $t=\sqrt{k \tau}$ is the global maximum of $R(t)$. (Hint: Think about sketching the derivative $R^{\prime}(t)$)

Bear eating berries

Question: The graph on the left shows $f(t)$ in summer, while the graph on the right shows $f(t)$ in autumn.

Should the bear spend more time per patch in summer, or in autumn?

Bear eating berries

Question: The graph on the left shows $f(t)$ in summer, while the graph on the right shows $f(t)$ in autumn.

Should the bear spend more time per patch in summer, or in autumn? Autumn - larger $k \Longrightarrow \sqrt{k \tau}$ is larger.

Another application - Optimal studying

- As you study a subject, you get tired. Your efficiency decreases. Knowledge gained after t minutes of study: $f(t)$.
- Length of study break: τ.

Long-term average rate of knowledge gained if you spend t minutes before taking breaks:

$$
R(t)=\frac{f(t)}{\tau+t}
$$

Data-fitting

Question: Given a collection of observed data points, how to find the best-fit line?

Data-fitting

Approach: Consider all possible lines, and pick the one which minimizes error.

Residuals

Points:
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
Line: $y=a x$ for some a

Residuals

Points:
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
Line: $y=a x$ for some a
Residuals: i-th residual is

$$
r_{i}=a x_{i}-y_{i}
$$

Residuals

Points:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \\
& \text { Line: } y=a x \text { for some } a
\end{aligned}
$$

Residuals: i-th residual is

$$
r_{i}=a x_{i}-y_{i}
$$

Approach: Minimize the sum of squared residuals

$$
r_{1}^{2}+\ldots+r_{n}^{2}=\left(a x_{1}-y_{1}\right)^{2}+\ldots+\left(a x_{n}-y_{n}\right)^{2}
$$

Residuals

Points:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \\
& \text { Line: } y=a x \text { for some } a
\end{aligned}
$$

Residuals: i-th residual is

$$
r_{i}=a x_{i}-y_{i}
$$

Approach: Minimize the sum of squared residuals
$r_{1}^{2}+\ldots+r_{n}^{2}=\left(a x_{1}-y_{1}\right)^{2}+\ldots+\left(a x_{n}-y_{n}\right)^{2}$

Question: What is the variable here?

Residuals

Points:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right) \\
& \text { Line: } y=a x \text { for some } a
\end{aligned}
$$

Residuals: i-th residual is

$$
r_{i}=a x_{i}-y_{i}
$$

Approach: Minimize the sum of squared residuals

$$
r_{1}^{2}+\ldots+r_{n}^{2}=\left(a x_{1}-y_{1}\right)^{2}+\ldots+\left(a x_{n}-y_{n}\right)^{2}
$$

Question: What is the variable here? Answer: a

$$
S S R(a)=\left(a x_{1}-y_{1}\right)^{2}+\ldots+\left(a x_{n}-y_{n}\right)^{2}
$$

Find the critical points:

$$
\begin{gathered}
S S R^{\prime}(a)=2\left(a x_{1}-y_{1}\right) x_{1}+\ldots+2\left(a x_{n}-y_{n}\right) x_{n}=0 \\
\left(a x_{1}-y_{1}\right) x_{1}+\ldots+\left(a x_{n}-y_{n}\right) x_{n}=0 \\
a x_{1}^{2}+a x_{2}^{2}+\ldots+a x_{n}^{2}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \\
a=\frac{x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}}{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}
\end{gathered}
$$

Exercise: Calculate the second derivative, $S S R^{\prime \prime}(a)$, to show that this is a minimum!

Example

$$
\begin{array}{c||cccc}
i & 1 & 2 & 3 & 4 \\
\hline x_{i} & 2 & 3 & 5 & 6 \\
\hline y_{i} & 1.5 & 2 & 3 & 4.5
\end{array}
$$

Example

$$
\begin{array}{c||cccc}
i & 1 & 2 & 3 & 4 \\
\hline x_{i} & 2 & 3 & 5 & 6 \\
\hline y_{i} & 1.5 & 2 & 3 & 4.5
\end{array}
$$

$$
a=\frac{x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}
$$

Example

$$
\begin{array}{c||cccc}
i & 1 & 2 & 3 & 4 \\
\hline x_{i} & 2 & 3 & 5 & 6 \\
\hline y_{i} & 1.5 & 2 & 3 & 4.5
\end{array}
$$

$$
\begin{aligned}
a & =\frac{x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}} \\
& =\frac{3+6+15+27}{4+9+25+36} \\
& =\frac{51}{74}
\end{aligned}
$$

Example

i	1	2	3	4
x_{i}	2	3	5	6
y_{i}	1.5	2	3	4.5

$$
\begin{aligned}
a & =\frac{x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}} \\
& =\frac{3+6+15+27}{4+9+25+36} \\
& =\frac{51}{74}
\end{aligned}
$$

The best-fit line is $y=\frac{51}{74} x$.

Recap

- Optimal Foraging - optimizing long-term average rate of gain subject to constraints.

Least Squares - using optimization to fit a set of data points with a best-fit trend line

